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Abstract

Among other results, a compact almost Kähler manifold is proved to be Kähler if the Ricci tensor
is semi-negative and its length coincides with that of the star Ricci tensor or if the Ricci tensor is
semi-positive and its first order covariant derivatives are Hermitian. Moreover, it is shown that there
are no compact almost Kähler manifolds with harmonic Weyl tensor and non-parallel semi-positive
Ricci tensor. Stronger results are obtained in dimension 4.
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0. Introduction

There are many examples of almost Kähler manifolds which are not Kähler[1,8,10,16,17,
19,24,30,31]. To find suitable curvature conditions that imply the integrability of the almost
complex structure is one of the most important problems concerning almost Kähler mani-
folds [2–4,6,9,11–14,18,20–23,25–29]. In this context, the starting point for many investi-
gations was Goldberg’s conjecture of 1969[14], which states that every compact Einstein
almost Kähler manifold is necessarily Kähler. Important progress was made by Sekigawa
in 1987. He proved the Goldberg conjecture for non-negative scalar curvature[27]. In case
of negative scalar curvature, no proof is known so far. There are attempts to construct coun-
terexamples against this part of the Goldberg conjecture. Our paper deals with several kinds
of curvature conditions that force an almost Kähler manifold to be Kähler, i.e., that the
almost complex structure of an almost Kähler manifold is integrable. One of our main re-
sults is a generalization of Sekigawa’s theorem mentioned above. We prove that a compact
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almost Kähler manifold is Kähler if the Ricci tensor is semi-positive(Ric ≥ 0) and its first
order covariant derivatives commute with the almost complex structure (Corollary 3.10). In
dimension 4, the supposition that Ric≥ 0 can be replaced by the weaker condition that the
star scalar curvatureS� is non-negative (Corollary 3.11). This result is more general than the
theorem that Satoh[25] proved recently. Satoh’s theorem states that every compact almost
Kähler manifold with semi-positive Ricci tensor and harmonic Weyl tensor(δW = 0) is
already Kähler. We show that there are no compact almost Kähler manifolds with harmonic
Weyl tensor and semi-positive, non-parallel Ricci tensor (Corollaries 3.12 and 3.13). Thus,
the suppositions of Satoh’s theorem imply that the Ricci tensor is parallel.

It is well known that an almost Kähler manifold is Kähler if its star scalar curvature
coincides with the scalar curvatureS. A similar result isProposition 3.1, which states that
an almost Kähler manifold with semi-positive Ricci tensor is already Kähler if the Hermitian
parts of the Ricci tensor and the star Ricci tensor have the same length. In dimension 4,
the supposition that Ric≥ 0 can replaced by the essential weaker condition thatS ≥ 0 or
that the set of zeros ofS + S� is nowhere dense (Proposition 3.2). For a compact almost
Kähler manifold with semi-negative Ricci tensor(Ric ≤ 0), the Kähler property is forced
by the supposition that the length of the star Ricci tensor Ric� coincides with that of the
Ricci tensor (Theorem 3.3).

In the case of a compact Einstein almost Kählern-manifold, the curvature inequality

|R̃−|2 + |Ric�|2 ≥ 1

n
S · S� (∗)

forces the Kähler property (Theorem 3.4). HereR̃− is a part of the curvature tensor de-
pending on the almost complex structureJ and the Weyl tensorW only. This inequality is
satisfied trivially ifS� ≥ 0. SinceS ≥ 0 impliesS� ≥ 0, we obtain Sekigawa’s result. With
regard to the Goldberg conjecture it may be interesting to investigate for which compact
Einstein almost Kähler manifolds(∗) is valid if S < 0.

In order to obtain the results for the compact case, we modify a well known basic Weitzen-
böck formula. So we find two integral formulas of different kind (Proposition 2.5). The
second one is applicable if a certain numberQ(J) vanishes.Q(J) is a globally defined ob-
struction against the integrability of the almost complex structureJ of every compact almost
Kähler manifold. We prove that a compact almost Kähler manifold with semi-positive Ricci
tensor is Kähler if and only ifQ(J) = 0 (Theorem 3.6). This theorem and the corresponding
four-dimensional version (Theorem 3.7) are essential results of this paper. In these theorems
the suppositions that Ric≥ 0 andS� ≥ 0, respectively, can be replaced by weaker curvature
inequalities (Remark 3.8). Moreover, we list some geometrical conditions, each of which
impliesQ(J) = 0 (Remark 3.9).

1. Preliminaries

Let (M, g, J) be an almost Hermitian manifold of dimensionn = 2m with Riemannian
metricg and almost complex structureJ . Then, by definition

J2 = −1 (1)
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andg is J-invariant, i.e., we have

g(JX, JY) = g(X, Y ) (2)

for all vector fieldsX,Y . The corresponding fundamental 2-formΩ is defined byΩ(X, Y ) :=
g(JX, Y ). An almost Hermitian manifold is called almost Kähler if its fundamental form is
closed:

dΩ = 0. (3)

It is well known that the basicequations (1)–(3)of an almost Kähler manifold imply that
Ω is also co-closed:

δΩ = 0 (4)

and thatJ satisfies the so-called quasi Kähler condition:

∇JXJ = ∇XJ ◦ J, (5)

where∇, as usual, denotes the Levi–Civita covariant derivative corresponding tog. (3) is
equivalent to

g((∇XJ )Y,Z)+ g((∇YJ )Z,X)+ g((∇ZJ )X, Y ) = 0. (6)

By (1) and (2), it holds that

g(JX, Y ) = −g(X, JY), (7)

i.e.,J is anti-selfadjoint (skew symmetric):

J∗ = −J. (8)

Applying ∇X to Eq. (1)we obtain

∇XJ ◦ J + J ◦ ∇XJ = 0. (9)

In the following we use the notation

∇2
X,Y := ∇X ◦ ∇Y − ∇∇XY

for the tensorial covariant derivatives of second order. Then the Riemannian curvature tensor
R of the metricg is given by

R(X, Y )Z = ∇2
X,YZ − ∇2

Y,XZ. (10)

Moreover, using(5) we obtain the equations

∇2
X,JYJ = ∇2

X,YJ ◦ J + ∇YJ ◦ ∇XJ − ∇(∇XJ)YJ, (11)

∇2
X,JYJ = −J ◦ ∇2

X,YJ − ∇XJ ◦ ∇YJ − ∇(∇XJ)YJ. (12)

For endomorphismsA, B of the tangent bundleTM, we use the notations

[A,B] := A ◦ B − B ◦ A, {A,B} := A ◦ B + B ◦ A
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for their commutator and anti-commutator, respectively. Then, for any endomorphismA

and the almost complex structureJ , we have the relations:

[{A, J}, J ] = 0, {[A, J ], J} = 0. (13)

By (11) and (12), we immediately obtain

{∇2
X,YJ, J} = −{∇XJ,∇YJ}. (14)

Let (X1, . . . , Xn) be any local frame of vector fields onM. Then, by(X1, . . . , Xn) we
denote the associated coframe, which, using the convention of summation, is defined by
Xk := gklXl, where(gkl) is the inverse of the matrix(gkl) with gkl := g(Xk,Xl). Thus, in
the case of an orthonormal frame, we haveXk = Xk (k = 1, . . . , n). In the following we
sometimes use orthonormal frames. We remark that(4) is then locally equivalent to

(∇Xk
J)Xk = 0 (15)

implying the equation

(∇2
X,Xk

J)Xk = 0 (16)

for any vector fieldX. The Ricci tensor is given by

Ric(X) := R(X,Xk)X
k (17)

and the star Ricci tensor of the almost Kähler manifold(M, g, J) is defined by

Ric�(X) := R(JX, JXk)X
k. (18)

Moreover, we use the notations

Ric+ := 1
2(Ric − J ◦ Ric ◦ J) = −1

2J ◦ {Ric, J}, (19)

Ric− := 1
2(Ric + J ◦ Ric ◦ J) = 1

2J ◦ [Ric, J ], (20)

Ric+
� := 1

2(Ric� − J ◦ Ric� ◦ J) = −1
2J ◦ {Ric�, J}, (21)

Ric−
� := 1

2(Ric� + J ◦ Ric� ◦ J) = 1
2J ◦ [Ric�, J ]. (22)

By definition, we have

Ric = Ric+ + Ric−, Ric� = Ric+
� + Ric−

� (23)

and from(13)and(19)–(22)we see that

[Ric+, J ] = {Ric−, J} = [Ric+
� , J ] = {Ric−

� , J} = 0. (24)

Obviously, the endomorphisms Ric+ and Ric− are symmetric

(Ric±)∗ = Ric±. (25)

Using the first Bianchi identity we find

Ric� = 1
2R(Xk, JXk) ◦ J, (26)
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which implies

(Ric�)
∗ = −J ◦ Ric� ◦ J. (27)

From(21), (22) and (27)we see that Ric+� is symmetric and Ric−� is skew symmetric

(Ric±)∗ = ±Ric±
� . (28)

We remark that in the Kähler case(∇J = 0) we have Ric� = Ric and Ric−� = Ric− = 0.
The Ricci formρ and the star Ricci formρ� are defined by

ρ(X, Y ) := g((J ◦ Ric+)X, Y ), ρ�(X, Y ) := g((J ◦ Ric+
� )X, Y ),

respectively. Both Ricci forms are Hermitian (J-invariant):

ρ(JX, JY) = ρ(X, Y ), ρ�(JX, JY) = ρ�(X, Y ). (29)

Besides the scalar curvatureS := tr(Ric) = tr(Ric+) also the star scalar curvatureS� :=
tr(Ric�) = tr(Ric+

� ) is considered. Further, for allX, Y ∈ Γ(TM), we have the curvature
endomorphism̃R(X, Y ) defined by

R̃(X, Y ) := 1
4[R(X, Y )− R(JX, JY), J ] ◦ J.

We see that̃R has the properties

R̃(X, Y )∗ = −R̃(X, Y ) = R̃(Y,X), (30)

{R̃(X, Y ), J} = 0, (31)

R̃(JX, JY) = −R̃(X, Y ). (32)

R̃(X, Y ) decomposes as follows:

R̃(X, Y ) = R̃+(X, Y )+ R̃−(X, Y ), (33)

whereR̃+ andR̃− are given by

R̃±(X, Y ) := 1
2(R̃(X, Y )± R̃(JX, Y ) ◦ J).

Obviously,R̃+ andR̃− also have the properties(30)–(32)and it holds that

R̃±(JX, Y ) ◦ J = ±R̃±(X, Y ). (34)

Using(11) and (12)a straightforward calculation yields the relation

R̃+(X, Y ) = 1
4∇ϕ(X,Y )J, (35)

whereϕ is the vector-valued 2-form defined byϕ(X, Y ) := (∇XJ)Y − (∇YJ)X. Using
(5) and (9)it is easy to see thatϕ has the properties

ϕ(JX, JY) = −ϕ(X, Y ), (36)

ϕ(JX, Y ) = ϕ(X, JY) = −J(ϕ(X, Y )). (37)
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Furthermore, from(6) we derive

∇ϕ(X,Y )J = −g((∇Xk
J)X, Y ) · ∇XkJ. (38)

Inserting(38) into (35)we obtain Gray’s identity[15]:

R̃+ = −1
4∇Xk

Ω ⊗ ∇XkJ. (39)

It is well known thatR̃− is already determined by the Weyl tensor. Let̃Ric be the en-
domorphism ofTM locally defined byR̃ic(X) := R̃(X,Xk)X

k. Using (33) and (34)we
obtain

R̃ic(X) = R̃+(X,Xk)X
k. (40)

By (39) and (40), we find

R̃ic = −1
4∇Xk

J ◦ ∇XkJ. (41)

Thus,R̃ic is symmetric and semi-positive:

(R̃ic)∗ = R̃ic, (42)

R̃ic ≥ 0. (43)

Moreover,R̃ic commutes with the almost complex structure:

[R̃ic, J ] = 0. (44)

In the following we use the Bochner Laplacian∇∗∇ locally given by∇∗∇ := −∇2
Xk,X

k .
From(14) and (42)we immediately obtain

{∇∗∇J, J} = −8R̃ic (45)

and using(16)we find

(∇2
Xk,X

J)Xk = (J ◦ Ric − Ric� ◦ J)X. (46)

Further,(6) implies the equation

g((∇2
V,XJ)Y, Z)+ g((∇2

V,ZJ)X, Y )+ g((∇2
V,YJ)Z,X) = 0, (47)

which is valid for all vector fieldsV,X, Y,Z. Contracting this equation and using(19),
(27) and (46)we obtain

∇∗∇J = 2(Ric� − Ric+) ◦ J. (48)

By (21), (45) and (48), we find the identity

R̃ic = 1
2(Ric+

� − Ric+). (49)

Multiplying (46)by J and using(23), (27) and (28)we obtain

(J ◦ ∇2
Xk,X

J)Xk = (Ric+
� − Ric+)X− (Ric−

� + Ric−)X. (50)
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For endomorphismsA,B of the tangent bundleTM, we use the scalar product〈A,B〉 :=
tr(A ◦ B∗). On the other hand, the scalar product of 2-formsξ, η is defined by〈ξ, η〉 :=
(1/2)ξ(Xk,Xl) · η(Xk,Xl). By (42), the trace of(49)yields the well known equation:

S� − S = |∇Ω|2. (51)

Let φ be the(0,2)-tensor field onM defined by

φ(X, Y ) := 1
2 tr(∇XJ · ∇JYJ) = −1

2〈∇XJ,∇JYJ〉.
Using(5) and (9)we see thatφ has the properties:

φ(X, Y ) = φ(JX, JY) = −φ(Y,X). (52)

Thus,φ is aJ-invariant 2-form. Moreover, by definition, it holds that

φ(X, JY) = 〈∇XΩ,∇YΩ〉. (53)

Gray’s identity(39)provides

|R̃+|2 = 1
2|φ|2. (54)

By (33) and (34), this implies

|R̃|2 = 1
2|φ|2 + |R̃−|2. (55)

An Ω-contraction ofEq. (47)yields

g((∇2
X,Xk

J)JXk, Y ) = 1
2 tr(J ◦ ∇X,YJ). (56)

Furthermore, by(14)we find
1
2 tr(J ◦ ∇2

X,YJ) = φ(X, JY). (57)

On the other hand, using(14)–(16)we have

(∇2
X,Xk

J)JXk = −(∇Xk
J ◦ ∇XJ)X

k. (58)

By (56) and (57), this provides the identity

g((∇Xk
J ◦ ∇XJ)X

k, Y ) = −φ(X, JY). (59)

2. Weitzenböck formulas

Let (M, g, J) be any almost Kähler manifold. By Proposition 1 in[5] and(55), there is
a vector fieldV1 onM such that

1
2|∇∗∇Ω|2 + |R̃|2 − |Ric−|2 + 2〈ρ,∇∗∇Ω〉 − 2〈ρ, φ〉 + div(V1) = 0. (60)

In contrast to the paper[5] the definition|R̃|2 := ∑
k,l |R̃(Xk,Xl)|2 is used here. The authors

show that Sekigawa’s theorem is an immediate consequence of the basic Weitzenböck
formula(60). In the following we modify this formula in order to obtain some more general
results.
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Lemma 2.1. For any almost Kähler manifold, we have the equations

2〈ρ, φ〉 = 〈∇Ric(Xk)Ω,∇XkΩ〉, (61)

〈ρ,∇∗∇Ω〉 = 2〈Ric, R̃ic〉. (62)

Proof. We calculate

2〈ρ, φ〉 = ρ(Xk,Xl) · φ(Xk,Xl) = 1
2g((J ◦ Ric+)Xk,Xl) · tr(∇Xk

J ◦ ∇JXl J)

= 1
2 tr(∇Xk

J ◦ ∇J((J◦Ric+)Xk)J) = φ(Xk, (J ◦ Ric+)Xk)

(52)= φ(Xk, (J ◦ Ric)Xk)
(53)= 〈∇Xk

Ω,∇Ric(Xk)Ω〉.
This proves(61). Further, we have

〈ρ,∇∗∇Ω〉 = 1
2〈J ◦ Ric+,∇∗∇J〉 = −1

4〈Ric+, {∇∗∇J, J}〉(45)= 2〈Ric+, R̃ic〉.

This yields(62)since〈Ric−, R̃ic〉 = 0 by (24) and (44). �

We introduce the vector-valued 2-formψ defined by

ψ(X, Y ) := 1
8([∇XRic, J ]Y − [∇YRic, J ]X− [∇JX Ric, J ]JY+ [∇JYRic, J ]JX).

A simple calculation using(36) and (37)provides the equation:

1
4g(J(ϕ(X

k,Xl)), (∇Xk
Ric)Xl − (∇Xl

Ric)Xk) = 〈ϕ,ψ〉 (63)

with 〈ϕ,ψ〉 := (1/2)g(ϕ(Xk,Xl), ψ(Xk,Xl)).

Lemma 2.2. For any almost Kähler manifold, it holds that

2〈Ric, R̃ic〉 = 2〈ρ, φ〉 + 2〈ϕ,ψ〉 + |Ric−|2 + div(V2), (64)

whereV2 is the vector field locally defined by

V2 := g(Ric(Xl), (J ◦ ∇Xl
J)Xk) ·Xk.

Proof. We calculate

2〈Ric, R̃ic〉 (49)= 〈Ric,Ric+
� − Ric+〉

(50)= 〈Ric,Ric−
� + Ric−〉 + g(Ric(Xl), (J ◦ ∇Xk,Xl

J)Xk).

By 〈Ric,Ric−
� 〉 = 〈Ric+,Ric−〉 = 0, this yields

2〈Ric, R̃ic〉 = |Ric−|2 + g(Ric(Xl), (J ◦ ∇Xk,Xl
J)Xk). (∗ )

Let x ∈ M be any point and(X1, . . . , Xn) an orthonormal frame in neighbourhood ofx

with (∇Xk)x = 0 for k = 1, . . . , n. Then, atx ∈ M, we have
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g(Ric(Xl), (J ◦ ∇2
Xk,Xl

J)Xk)

= Xk(g(Ric(Xl), (J ◦ ∇Xl
J)Xk))− g(Ric(Xl), (∇Xk

J ◦ ∇Xl
J)Xk)

−g((∇Xk
Ric)Xl, (J ◦ ∇Xl

J)Xk)

(5),(9),(59)= div(V2)+ φ(Xl, (J ◦ Ric)Xl)

−g(J((∇XlJ)X
k − (∇XkJ)X

l), (∇Xk
Ric)Xl)

(53)= div(V2)+ 〈∇Xl
Ω,∇Ric(Xl)Ω〉 + g(J(ϕ(Xk,Xl)), (∇Xk

Ric)Xl)

(61)= div(V2)+ 2〈ρ, φ〉 + 1
2g(J(ϕ(X

k,Xl)), (∇Xk
Ric)Xl − (∇Xl

Ric)Xk)

(63)= div(V2)+ 2〈ρ, φ〉 + 2〈ϕ,ψ〉
and, hence:

g(Ric(Xl), (J ◦ ∇2
Xk,Xl

J)Xk) = 2〈ρ, φ〉 + 2〈ϕ,ψ〉 + div(V2). (2∗)

Inserting(2∗) into (∗) we obtain(64). �

Using(48) and (49)and〈Ric, R̃ic〉 = 〈Ric+, R̃ic〉 we obtain by straightforward calcula-
tions the following lemma.

Lemma 2.3. The identities
1
2|∇∗∇Ω|2 = |Ric−

� |2 + 4|R̃ic|2, (65)

|R̃ic|2 + 〈Ric, R̃ic〉 = 1
4(|Ric+

� |2 − |Ric+|2), (66)

2|R̃ic|2 + 〈Ric, R̃ic〉 = 〈Ric+
� , R̃ic〉 (67)

are valid for any almost Kähler manifold.

Lemma 2.4. Let (M, g, J) be any almost Kähler manifold. Then we have the equations

|R̃|2 + |Ric�|2 − |Ric|2 − 2〈ρ, φ〉 + div(V1) = 0, (68)

|R̃|2 + |Ric−
� |2 + 2〈Ric+

� , R̃ic〉 + 2〈ϕ,ψ〉 + div(V1 + V2) = 0. (69)

Proof. Inserting(62) and (65)into (60) we find (68) using(66). We eliminate the term
2〈ρ, φ〉 in (68)by (64)and then we obtain(69)using(66) and (67). �

Let (M, g, J) be any almost Hermitiann-manifold. Then we consider the functionq(J)
locally defined by

q(J) := g((∇2
Xk,Xl

Ric)JXk, JXl).

Obviously, it holds that

q(J) = 1
2g((∇2

Xk,Xl
Ric + ∇2

Xl,Xk
Ric)JXk, JXl)

= 1
2g((∇2

JXk,JXl Ric + ∇2
JXl,JXk Ric)Xk,Xl). (70)
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If M is compact, then we consider the number

Q(J) :=
∫
M

q(J)ω,

whereω := (1/m!)Ωm(n = 2m) is the volume form. Since in the Kähler case [∇2 Ric, J ] =
0, i.e., [∇2

X,Y Ric, J ] = 0 for all vector fieldsX andY , we have

q(J) = g((∇2
Xk,Xl

Ric)Xk,Xl) = −1
2%S

then and, hence,Q(J) = 0. Thus,Q(J) is an obstruction against the Kähler property of
any compact almost Hermitian manifold. Furthermore, if(M, g, J) is almost Kähler, then
a simple calculation yields

q(J) = 2〈ϕ,ψ〉 + div(V3), (71)

whereV3 is the vector field onM locally given byV3 := g((∇Xl
Ric)JXl, JXk) · Xk. This

implies

Q(J) = 2
∫
M

〈ϕ,ψ〉ω. (72)

By (72), Lemma 2.4provides immediately the following proposition.

Proposition 2.5. For any compact almost Kähler manifold, the equations∫
M

(|R̃|2 + |Ric�|2 − |Ric|2 − 2〈ρ, φ〉)ω = 0, (73)

Q(J)+
∫
M

(|R̃|2 + |Ric−
� |2 + 2〈Ric+

� , R̃ic〉)ω = 0 (74)

are valid.

3. Applications

For any almost Kähler manifold, it is very natural to compare the tensors Ric+
� and Ric+

since both tensors are symmetric, Hermitian and coincide with the Ricci tensor in the Kähler
case. In particular, a necessary condition for an almost Kähler manifold to be Kähler is that
Ric+

� and Ric+ have the same length(|Ric+
� | = |Ric+|).

Proposition 3.1. Let (M, g, J) be an almost Kähler manifold with|Ric+
� | = |Ric+|. Then

(M, g, J) is Kähler ifRic or Ric+ is semi-positive or ifRic+
� is semi-negative.

Proof. Since〈Ric, R̃ic〉 = 〈Ric+, R̃ic〉 andR̃ic ≥ 0, our supposition Ric≥ 0 or Ric+ ≥ 0,
respectively, implies〈Ric, R̃ic〉 ≥ 0. Thus, the assumption|Ric+

� | = |Ric+| forcesR̃ic = 0
by (66). Using(66) and (67)we immediately obtain the equation

〈Ric+
� , R̃ic〉 − |R̃ic|2 = 1

4(|Ric+
� |2 − |Ric+|2). (75)
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This shows that the suppositions|Ric+
� | = |Ric+| and Ric+� ≤ 0 also forceR̃ic = 0. By

(41), we have tr(R̃ic) = (1/4)|∇J |2. Thus,R̃ic = 0 implies∇J = 0. �

In dimension 4, we have the following stronger result.

Proposition 3.2. Let (M, g, J) be an almost Kähler4-manifold such thatRic+
� andRic+

have the same length. Then(M, g, J) is Kähler ifS ≥ 0 or S� ≤ 0 or if supp(S+S�) = M.

Proof. It is known that, for any almost Kähler 4-manifold, the endomorphism∇Xk
J ◦∇XkJ

is a multiple of the identity map[28]. By (41), this yields

R̃ic = 1
8|∇Ω|2. (76)

Inserting(76) into (66) and (75)we obtain the equations

4(|Ric+
� |2 − |Ric+|2) = |∇Ω|4 + 2S · |∇Ω|2 = 2S� · |∇Ω|2 − |∇Ω|4, (77)

which provide

4(|Ric+
� |2 − |Ric+|2) = (S + S�) · |∇Ω|2. (78)

Obviously, our suppositions imply∇Ω = 0 by (77) and (78). �

Another necessary condition for an almost Kähler manifold to be Kähler is|Ric�| = |Ric|.
The following theorem shows that this condition is also sufficient in the compact case with
semi-negative Ricci tensor(Ric ≤ 0).

Theorem 3.3. Let(M, g, J ) be any compact almost Kähler manifold such that at least one
of the tensorsRic,Ric+ or Ric+

� is semi-negative. Then(M, g, J) is Kähler ifRic� andRic
have the same length.

Proof. It holds that

〈∇Ric(Xk)Ω,∇XkΩ〉
(5),(9)= 〈∇Ric+(Xk)

Ω,∇XkΩ〉(49)= 〈∇Ric+
� (Xk)

Ω,∇XkΩ〉 − 2〈∇R̃ic(Xk)
Ω,∇XkΩ〉.

By (61), this yields

2〈ρ, φ〉 = 〈∇Ric+(Xk)
Ω,∇XkΩ〉 = 〈∇Ric+

� (Xk)
Ω,∇Xk

Ω〉 − 2〈∇R̃ic(Xk)
Ω,∇XkΩ〉.

(79)

Using(61) and (79)we see that each of the suppositions Ric≤ 0,Ric+ ≤ 0 or Ric+� ≤ 0
implies〈ρ, φ〉 ≤ 0. Thus, by(55) and (73), we obtain the inequality∫

M

(
1

2
|φ|2 + |R̃−|2 + |Ric�|2 − |Ric|2

)
ω ≤ 0, (80)

which providesφ = 0 if |Ric�| = |Ric|. By (53), φ = 0 implies∇Ω = 0. �
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The application of the integral formula(73) to the Einstein case yields the following
theorem.

Theorem 3.4. A compact Einstein almost Kähler n-manifold is necessarily Kähler if the
inequality

|R̃−|2 + |Ric�|2 ≥ 1

n
S · S� (81)

is satisfied.

Proof. In the Einstein case of Ric= S/n, we have

|Ric|2 + 2〈ρ, φ〉(61)= S2

n
+ S

n
|∇Ω|2(51)= 1

n
S · S�.

Inserting this into(73)we see that(81) forces∇Ω = 0. �

Since inequality(81) is equivalent to

|R̃−|2 + |Ric� − S�

n
|2 + S�

n
|∇Ω|2 ≥ 0, (82)

we immediately obtain the following corollary.

Corollary 3.5. Every compact Einstein almost Kähler manifold with non-negative star
scalar curvature is Kähler.

This corollary is a slight generalization of Sekigawa’s theorem sinceS ≥ 0 implies
S� ≥ 0 by (51).

Concerning the Goldberg conjecture it may be interesting to investigate inequality(81)
in suitable geometrical situations withS < 0.

Now we consider the integral formula(74). The main results of this paper are the following
two theorems.

Theorem 3.6. Let (M, g, J) be any compact almost Kähler manifold such that at least one
of the tensorsRic,Ric+ or Ric+

� is semi-positive. Then J is integrable ifQ(J) = 0.

Proof. By (43) and (67), each of the suppositions Ric≥ 0, Ric+ ≥ 0 or Ric+� ≥ 0,
respectively, implies〈Ric+

� , R̃ic〉 ≥ 0. Thus,(74) andQ(J) = 0 forceR̃ = 0, and, hence,
∇Ω = 0 by (53) and (55). �

By (76), Eq. (74)yields immediately the following theorem.

Theorem 3.7. If (M, g, J) is a compact almost Kähler4-manifold withS� ≥ 0, then
Q(J) = 0 implies∇J = 0.
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Remark 3.8. The supposition inTheorem 3.6that at least one of the tensors Ric,Ric+ or
Ric+

� is semi-positive can be replaced by the weaker condition

|R̃−|2 + |Ric−
� |2 + 2〈Ric+

� , R̃ic〉 ≥ 0. (83)

This condition does not involve any derivatives of the almost complex structureJ . By (49),
(83)becomes

|R̃−|2 + |Ric�|2 ≥ 〈Ric+
� ,Ric+〉. (84)

Moreover, in dimension 4,(83) is equivalent to

|R̃−|2 + |Ric−
� |2 + 1

4S�|∇Ω|2 ≥ 0. (85)

In the Kähler case, these inequalities are satisfied trivially.

Remark 3.9.

(i) The condition

[∇ Ric, J ] = 0, (86)

i.e., [∇X Ric, J ] = 0 for all vector fieldsX, impliesψ = 0 and, hence,Q(J) = 0 by
(72). Obviously, any Kähler manifold satisfies this condition.

(ii) By (70), the condition

[∇2
X,Y Ric + ∇2

Y,X Ric, J ] = 0 (87)

yieldsq(J) = −(1/2)%S and, hence,Q(J) = 0. In particular, the stronger supposi-
tion that [∇2 Ric, J ] = 0 forcesQ(J) = 0. Again, any Kähler manifold fulfils this
condition.

(iii) The second oneEq. (70)shows that

∇2
JX,JYRic + ∇2

JY,JX Ric = ∇2
X,Y Ric + ∇2

Y,X Ric (88)

impliesQ(J) = 0.
(iv) Using (63)a simple calculation yields that the supposition

(∇X Ric)Y − (∇Y Ric)X = 1

2(n− 1)
(X(S)Y − Y(S)X) (89)

provides〈ϕ,ψ〉 = 0 and, hence,Q(J) = 0 by (72).
It is well known that, for dimensionn ≥ 4, (89) is equivalent to the condition that

the Weyl tensorW is divergence-free or co-closed(δW = 0). SinceδW = 0 implies
dW = 0 (second Bianchi identity forW), W is also called harmonic in this case. Ex-
amples of Riemannian manifolds with harmonic Weyl tensor are given in[7, Chapter
16.D]. Such manifolds are also called nearly conformally symmetric.

(v) A straightforward calculation shows that(89) implies

∇2
X,Y Ric + ∇2

Y,X Ric = (∇2
X,· Ric)Y + (∇2

Y,· Ric)X

+ 1

2(n− 1)
(2∇2

X,YS−∇X dS ⊗ Y − ∇Y dS ⊗X). (90)

Inserting this into(70)we findq(J) = −(1/2(n−1))%S. Thus,(90)forcesQ(J) = 0.
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Remark 3.9yields some possibilities for concrete applications of our main theorems. The
simplest case of application is the situation with parallel Ricci tensor in which each of the
conditions(86)–(90)is satisfied trivially. ByRemark 3.9, (i), the following corollaries are
immediate consequences ofTheorems 3.6 and 3.7, respectively.

Corollary 3.10. Let (M, g, J ) be any compact almost Kähler manifold such that at least
one of the tensorsRic,Ric+ or Ric+

� is semi-positive. Then[∇ Ric, J ] = 0 implies∇J = 0.

Corollary 3.11. Every compact almost Kähler4-manifold (M, g, J) with S� ≥ 0 and
[∇ Ric, J ] = 0 is Kähler.

Corollary 3.10is a generalization of Sekigawa’s theorem. It shows that the assertion
of this theorem is true not only for compact Einstein manifolds of non-negative scalar
curvature but also for Riemannian products of such manifolds. It seems that condition(89)
is a suitable generalization of the supposition that∇ Ric = 0 for our purposes. But this
is not the case by the fact that the Ricci tensor of a Kähler manifold with harmonic Weyl
tensor is parallel ([7], 16.30 Prop.). Thus, every almost Kähler manifold with harmonic
Weyl tensor and non-parallel Ricci tensor cannot be Kähler and, hence, is strictly almost
Kähler by definition. Taking into account this fact, byRemark 3.9(iv) andTheorem 3.6, we
immediately obtain the following corollary.

Corollary 3.12. A compact almost Hermitian manifold of dimensionn ≥ 4 with harmonic
Weyl tensor and non-parallel, semi-positive Ricci tensor cannot be almost Kähler.

Finally, Theorem 3.7implies the following corollary.

Corollary 3.13. Every compact almost Hermitian4-manifold with harmonic Weyl tensor,
non-parallel Ricci tensor and non-negative scalar curvature is not almost Kähler.

In particular,Corollary 3.13shows that there are no compact almost Kähler 4-manifolds
with harmonic Weyl tensor and non-constant, non-negative scalar curvature.
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